Deep Learning & Machine Learning/XGBoost2024. 7. 8. 22:36XGBoost에서 파이프라인 사용하여 표준화(standardization) 적용하기
XGBoost와 표준화(standardization)를 하나의 파이프라인으로 생성하여 학습을 진행하면 나중에 파이프라인으로 추론시 표준화까지 처리됩니다. 포스트에서 사용하고 있는 스케일러인 StandardScaler 외에 RobustScaler, MinMaxScaler, Normalizer, QuantileTransformer, PowerTransformer 도 테스트를 통해 사용해보세요. 데이터셋에 따라 잘 동작하는 스케일러가 다릅니다. 테스트를 통해 스케일러를 적용 전후 또는 서로다른 스케일러 적용시 Optuna의 최적 파라미터값이 같을 수 있다는 것을 확인했습니다. 하지만 모델 추론시 차이가 발견되었습니다. 주의할 점은 데이터에 따라서는 이마저도 별차이가 없는 경우도 있습니다.2024. 7. 4..